A six-variable identity for a ternary vector cross product in eight-dimensional space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21593
(http://iopscience.iop.org/0305-4470/21/3/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:32

Please note that terms and conditions apply.

A six-variable identity for a ternary vector cross product in eight-dimensional space

R Shaw
School of Mathematics, University of Hull, Hull HU6 7RX, UK

Received 1 September 1987

Abstract

Let $X(a, b, c)$ be a ternary vector cross product for eight-dimensional Euclidean space E. An identity is derived which expresses $\langle X(a, b, c), X(u, v, w)\rangle$ in terms of the Spin(7)-invariant scalar quadruple product $\Phi(a, b, c, d)=\langle a, X(b, c, d)\rangle$. The proof of the identity is coordinate free, and starts out from an explicit expression for X, with E viewed as complex four-dimensional Hilbert space.

Let $(E,\langle\rangle, X$,$) be an r X n$ algebra, $2 \leqslant r \leqslant n$, as defined in [1]. Spelling this out, E is a real n-dimensional vector space which is equipped with a positive-definite inner product \langle,$\rangle and also with an r$-fold vector cross product, that is with a map $X: E^{r} \rightarrow E$ which satisfies the axioms (cf $[2,3]$):
X is r-linear

$$
\begin{array}{ll}
\left\langle X\left(a_{1}, \ldots, a_{r}\right), a_{i}\right\rangle=0 & i=1,2, \ldots, r \tag{2}\\
\left\langle X\left(a_{1}, \ldots, a_{r}\right), X\left(a_{1}, \ldots, a_{r}\right)\right\rangle=\left\langle a_{1} \wedge \ldots \wedge a_{r} \mid a_{1} \wedge \ldots \wedge a_{r}\right\rangle
\end{array}
$$

where $\left\langle a_{1} \wedge \ldots \wedge a_{r} \mid b_{1} \wedge \ldots \wedge b_{r}\right\rangle \equiv \operatorname{det}\left(\left\langle a_{i}, b_{j}\right\rangle\right)$. Associated with an $r X n$ algebra is the 'scalar $(r+1)$-tuple product' Φ defined by

$$
\begin{equation*}
\Phi\left(a_{0}, a_{1}, \ldots, a_{r}\right)=\left\langle a_{0}, X\left(a_{1}, \ldots, a_{r}\right)\right\rangle . \tag{4}
\end{equation*}
$$

By axioms (1) and (2), Φ is alternating, whence so is X. Consequently we may view X as a linear map $\wedge^{r} E \rightarrow E$.

It is known ($[2,3$], see also [1]) that 2 Xn algebras exist only in dimensions $n=3,7$, that $3 X n$ algebras exist only in dimensions $n=4,8$, and that for $r>3, r X n$ algebras exist only in dimension $r+1$. In the case of the 'non-exceptional' $r X(r+1)$ algebras it is easy to see that axioms (1)-(3) possess precisely two solutions for each $r \geqslant 2$, given in terms of the star operator $\Lambda^{r} E \rightarrow E$ by

$$
\begin{equation*}
X\left(a_{1}, \ldots, a_{r}\right)= \pm^{*}\left(a_{1} \wedge \ldots \wedge a_{r}\right) . \tag{5}
\end{equation*}
$$

Now, for Euclidean space E, the star operator is well known to be an isometry. Consequently in these non-exceptional cases the following strengthened form of (3) holds:

$$
\begin{equation*}
\left\langle X\left(a_{1}, \ldots, a_{r}\right), X\left(b_{1}, \ldots b_{r}\right)\right\rangle=\left\langle a_{1} \wedge \ldots \wedge a_{r} \mid b_{1} \wedge \ldots \wedge b_{r}\right\rangle . \tag{6}
\end{equation*}
$$

Going in the other direction it should be noted that if we had adopted (1), (2) and (6) as axioms, instead of (1)-(3), then we would have overlooked the exceptional 2×7
and $3 X 8$ cases, which are in fact of greatest interest! For, viewing X as $\wedge^{r} E \rightarrow E$, we see that (6) implies that X is an isometry, and hence that $\operatorname{dim}\left(\wedge^{r} E\right)=\operatorname{dim} E=n$, which (for $r \geqslant 2$) occurs only in the non-exceptional cases $r=n-1$. The purpose of this paper is to obtain the generalisations of (6) which are valid in the exceptional $2 X^{7}$ and $3 X 8$ cases, namely those given in the following two theorems. In the case of a $2 X 7$ algebra we will denote the underlying seven-dimensional Euclidean space by E^{\prime} rather than E, and will denote the scalar triple product by ϕ, not Φ :

$$
\begin{equation*}
\phi(a, b, c)=\langle a, X(b, c)\rangle \tag{7}
\end{equation*}
$$

Since ϕ is alternating we think of it also as an element $\phi \in \bigwedge^{3} E^{\prime}$ and denote by * a (suitably signed) star operator $\Lambda^{3} E^{\prime} \rightarrow \bigwedge^{4} E^{\prime}$.

Theorem A. For a $2 X 7$ algebra ($E^{\prime},\langle\rangle,$,$X) we have the identity$

$$
\begin{equation*}
\langle X(a, b), X(u, v)\rangle=\langle a \wedge b \mid u \wedge v\rangle+\psi(a, b, u, v) \tag{8}
\end{equation*}
$$

where $\psi={ }^{*} \phi$.
Theorem B. For a $3 X 8$ algebra ($E,\langle\rangle,$,$X) we have$

$$
\begin{equation*}
\langle X(a, b, c), X(\langle u, v, w)\rangle=\langle a \wedge b \wedge c \mid u \wedge v \wedge w\rangle+F(a, b, c, u, v, w) \tag{9}
\end{equation*}
$$

where (writing $f(a, b, c)+f(b, c, a)+f(c, a, b)$ as $\mathrm{Cyc}_{a, b, c} f(a, b, c)$)

$$
\begin{equation*}
F(a, b, c, u, v, w)=\varepsilon \operatorname{Cyc}_{a, b, c} \operatorname{Cyc}_{u, v, w}(a, u\rangle \Phi(b, c, v, w) \tag{10}
\end{equation*}
$$

with $\varepsilon=+1$ or -1 according to whether the $3 X 8$ algebra is of type I or type II (see [1]).
Remark. Some slight insight into the identity (8) can be gained from the following alternative proof of (6) in the case of the familiar vector cross product $\boldsymbol{a} \times \boldsymbol{b}$ in three-dimensional Euclidean space. In this $2 X 3$ case let us define ψ by

$$
\begin{equation*}
\psi(a, b, u, v)=\langle a \times b, u \times v\rangle-\langle a \wedge b \mid u \wedge v\rangle . \tag{11}
\end{equation*}
$$

By axiom (3) we have

$$
\begin{equation*}
\psi(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{b})=0 . \tag{12}
\end{equation*}
$$

(From the point of view of the teaching of $\boldsymbol{a} \times \boldsymbol{b}$ to undergraduates via the geometric definition $\boldsymbol{a} \times \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \sin \theta \boldsymbol{n}$, then (12) holds because $\sin ^{2} \theta=1-\cos ^{2} \theta$.) Observing that $\psi(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{v})=\psi(\boldsymbol{a}, \boldsymbol{v}, \boldsymbol{a}, \boldsymbol{b})$, linearisation of (12) in the vector \boldsymbol{b} yields

$$
\begin{equation*}
\psi(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{v})=0 . \tag{13}
\end{equation*}
$$

Consequently $\psi(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{u}, \boldsymbol{v})$, which (trivially) is zero when $\boldsymbol{a}=\boldsymbol{b}$ and when $\boldsymbol{u}=\boldsymbol{v}$, is also zero when $\boldsymbol{a}=\boldsymbol{u}$. The quadrilinear form ψ is thus alternating and hence, in dimension 3 , is the zero form. This proof of (6) (and hence of the familiar identity ($\boldsymbol{a} \times \boldsymbol{b}$) $\times \boldsymbol{u}=$ $\langle\boldsymbol{a}, \boldsymbol{u}\rangle \boldsymbol{b}-\langle\boldsymbol{b}, \boldsymbol{u}\rangle \boldsymbol{a})$ fails for dimension $n>3$, where ψ is still alternating but may not be zero. So we are led to speculate, could ψ, for $n>3$, be simply related to ϕ ? Conceivably we could be led in this way to consideration of the exceptional $2 X 7$ algebras, since only in dimension $7(=4+3)$ can ψ and ϕ, considered as elements of $\wedge^{4} E^{\prime}$ and $\wedge^{3} E^{\prime}$, be related by the star operator.

In terms of the tensor components $\Phi_{a b c d}=\Phi\left(e_{a}, e_{b}, e_{c}, e_{d}\right)$ of Φ relative to an orthonormal basis, the identity (10) takes on the form

$$
\begin{equation*}
\Phi^{a b c s} \Phi_{u v w s}=6 \delta_{u v w}^{a b c}+9 \varepsilon \delta_{[u}^{[a} \Phi^{b c]}{ }_{v w]} . \tag{14}
\end{equation*}
$$

In this coordinate form the identity (10) has in fact previously appeared in the physics literature on $d=11$ supergravity theories (see $[4,5]$). The tensor $\Phi_{a b c d}$ is totally skew-symmetric, self-dual (as noted also in [1]) and invariant under the Spin(7) subgroup of $S O(E) \simeq S O(8)$ which is the automorphism group of the $3 X 8$ algebra. (Conceivably, as discussed in [6], the invariance group of Φ could even be bigger than Spin (7).)

In [4] the eight-dimensional identity (14) was obtained by making use of a sevendimensional identity (the coordinate form of (8)). In the present paper we instead straightaway pursue a coordinate-free proof of identity (9). The identity (8) can then be obtained from (9) as follows.

Choose any unit vector $e \in E$ and let E^{\prime} denote the seven-dimensional subspace which is orthogonal to e. Then E^{\prime} becomes a $2 X 7$ algebra upon defining

$$
\begin{equation*}
X(a, b)=X(a, e, b) \quad \text { for } a, b \in E^{\prime} \tag{15}
\end{equation*}
$$

The associated scalar triple product $\phi(a, b, c)=\langle a, X(b, c)\rangle$ is thus related to Φ by

$$
\phi(a, b, c)=\Phi(e, a, b, c) \quad a, b, c \in E^{\prime}
$$

Consequently, after using the self-duality of Φ, the special case $c=w=e$ and $a, b, u, v \in$ E^{\prime} of identity (9) is seen to yield identity (8).

Our proof of theorem B will start out from certain explicit expressions for X and Φ which we now describe. Let us find E as the realisation $E=\left(C^{4}\right)^{\mathbb{R}}$ of complex four-dimensional Hilbert space C^{4}. We denote the inner product on C^{4} by (a, b) and take it to be linear in a and so antilinear in b. Let Δ denote a determinant function for C^{4}, normalised to be equal to +1 upon some ordered orthonormal basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ for C^{4}. Let $b \times c \times d$ denote the 'complex ternary vector cross product' on C^{4} which is defined by

$$
\begin{equation*}
\Delta(a, b, c, d)=(a, b \times c \times d) \tag{16}
\end{equation*}
$$

This cross product satisfies a peculiar kind of complex version of properties (1), (2) and (6):

$$
\begin{align*}
& a_{1} \times a_{2} \times a_{3} \text { is triantilinear in } a_{1}, a_{2}, a_{3} \tag{17}\\
& \left(a_{1} \times a_{2} \times a_{3}, a_{i}\right)=0 \quad i=1,2,3 \tag{18}\\
& \left(a_{1} \times a_{2} \times a_{3}, b_{1} \times b_{2} \times b_{3}\right)=\operatorname{det}\left(b_{i}, a_{j}\right) . \tag{19}
\end{align*}
$$

Finally, let $\langle a, b\rangle$ and $[a, b]$ denote the real and imaginary parts of (a, b) :

$$
\begin{equation*}
(a, b)=\langle a, b\rangle+\mathrm{i}[a, b] . \tag{20}
\end{equation*}
$$

Thus E is equipped now not only with $\mathrm{O}(8)$ geometry by means of \langle,$\rangle , but also with$ $\mathrm{Sp}(8 ; \mathbb{R})$ geometry by means of [,].

We now claim that a ternary vector cross product X for $(E,\langle\rangle$,$) is given by$

$$
\begin{equation*}
X(a, b, c)=a \times b \times c+\mathrm{iCyc}_{a, b, c}[a, b] c \tag{21}
\end{equation*}
$$

the associated scalar quadruple product being therefore

$$
\begin{equation*}
\Phi(a, b, c, d)=\operatorname{Re}(\Delta(a, b, c, d))+\mathrm{Cyc}_{a, b, c}[a, b][c, d] . \tag{22}
\end{equation*}
$$

It is possible to check directly that X so defined does satisfy the axioms (1)-(3). However, another method of carrying out this check is slightly cleaner. Define a map $\left\}: E^{3} \rightarrow E\right.$ by (cf [1])

$$
\begin{equation*}
\{a b c\}=X(a, b, c)+\langle a, b\rangle c+\langle b, c\rangle a-\langle a, c\rangle b \tag{23}
\end{equation*}
$$

i.e. in our present case, by

$$
\begin{equation*}
\{a b c\}=a \times b \times c+(a, b) c+(b, c) a-(a, c) b \tag{24}
\end{equation*}
$$

Then one can check that $\}$ as given by (24) enjoys the properties

$$
\begin{align*}
& \} \text { is trilinear } \\
& \{a a c\}=\langle a, a\rangle c=\{c a a\} \\
& \langle\{a b c\},\{a b c\}\rangle=\langle a, a\rangle\langle b, b\rangle\langle c, c\rangle
\end{align*}
$$

As demonstrated in [6 , theorem 2.3], checking that $\left\}\right.$ satisfies $\left(1^{\prime}\right)-\left(3^{\prime}\right)$ is completely equivalent to proving that X satisfies (1)-(3). As noted also in [6], X is in fact of type I.

The way ahead is now clear: definition (21) combined with property (19) will surely allow us to 'evaluate' the inner product $\langle\boldsymbol{X}(a, b, c), X(u, v, w)\rangle$. However, in order to simplify the result to the desired form as given in theorem B, the following preliminary lemma is helpful.

Lemma. The following identity holds:

$$
\begin{aligned}
& \mathrm{Cyc}_{a, b, c} \mathrm{Cyc}_{u, v, w}\langle a, u\rangle \operatorname{Re}(\Delta(b, c, v, w)) \\
& \quad=\mathrm{Cyc}_{u, v, w}[u, v] \operatorname{Im}(\Delta(a, b, c, w))+\mathrm{Cyc}_{a, b, c}[a, b] \operatorname{Im}(\Delta(u, v, w, c))
\end{aligned}
$$

Proof of lemma. Start from the fact ('Cramer's rule') that alternation of the quinquelinear function $\Delta\left(a_{1}, a_{2}, a_{3}, a_{4}\right) a_{5}$ of four-dimensional complex vectors a_{1}, \ldots, a_{5} must yield zero. Upon forming the inner product of this result with a sixth vector, and changing the notation, we have

$$
\begin{equation*}
\mathrm{Cyc}_{a, b, c}(a, u) \Delta(b, c, v, w)=(v, u) \Delta(a, b, c, w)-(w, u) \Delta(a, b, c, v) \tag{25}
\end{equation*}
$$

Equally well we also have

$$
\begin{equation*}
\mathrm{Cyc}_{\mu, v, w}(u, a) \Delta(b, c, v, w)=(b, a) \Delta(u, v, w, c)-(c, a) \Delta(u, v, w, b) \tag{26}
\end{equation*}
$$

By adding $\mathrm{Cyc}_{u, v, w}(25)$ to $\mathrm{Cyc}_{a, b, c}$ (26) and taking the real part we obtain the result announced in the lemma.

Proof of theorem B.

$$
\begin{align*}
\langle X(a, b, c), & X(u, v, w)\rangle \\
= & \operatorname{Re}(X(a, b, c), X(u, v, w)) \\
= & \operatorname{Re}(D)+\operatorname{Cyc}_{u, c, w}[u, v] \operatorname{Im}\left(\Delta(a, b, c, w)+\operatorname{Cyc}_{a, b, c}[a, b] \operatorname{Im}(\Delta(u, v, w, c))\right. \\
& +\operatorname{Cyc}_{a, b, c} \operatorname{Cyc}_{u, v, w}[a, b][u, v]\langle c, w\rangle \tag{27}
\end{align*}
$$

(since $\operatorname{Re}(a \times b \times c, \mathrm{i} u)=\operatorname{Im}(\Delta(a, b, c, u))$, etc), where

$$
D \equiv\left|\begin{array}{lll}
(a, u) & (a, v) & (a, w) \\
(b, u) & (b, v) & (b, w) \\
(c, u) & (c, v) & (c, w)
\end{array}\right|
$$

The real part of the 3×3 complex determinant D contributes $\langle a \wedge b \wedge c \mid u \wedge v \wedge w\rangle$ plus other terms. These latter, taken along with the fourth term on the RHS of (27), contribute an amount

$$
[b, u][a, v]+[u, a][b, v]+[a, b][u, v]
$$

to the coefficient of $\langle c, w\rangle$, i.e. by (22) an amount

$$
\Phi(a, b, u, v)-\operatorname{Re}(\Delta(a, b, u, v))
$$

By virtue of the lemma the terms involving $\operatorname{Re}(\Delta)$ and $\operatorname{Im}(\Delta)$ cancel, and theorem B ensues, with $\varepsilon=+1$. Replacing $X \in$ type I with $-X \in$ type II gives theorem B in the case $\varepsilon=-1$.

References

[1] Shaw R 1987 J. Phys. A: Math. Gen. 20 L689
[2] Eckmann B 1942-3 Commun. Math. Helv. 15318
[3] Brown R B and Gray A 1967 Commun. Math. Helv. 42222
[4] de Wit B and Nicolai H 1984 Nucl. Phys. B 231506
[5] Dündarer R, Gürsey F and Tze C-H 1984 J. Math. Phys. 251496
[6] Shaw R 1987 Preprint HU/87/S3

