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A six-variable identity for a ternary vector cross product in 
eight-dimensional space 

R Shaw 
School of Mathematics, University of Hull, Hull HU6 7RX, UK 

Received 1 September 1987 

Abstract. Let X ( a ,  b, c )  be a ternary vector cross product for eight-dimensional Euclidean 
space E. An identity is derived which expresses ( X ( a ,  b, c), X ( u ,  U, w ) )  in terms of the 
Spin(7)-invariant scalar quadruple product @ ( a ,  6, c, d )  = ( a ,  X ( b ,  c, d ) ) .  The proof of the 
identity is coordinate free, and starts out from an explicit expression for X ,  with E viewed 
as complex four-dimensional Hilbert space. 

Let ( E ,  ( , ), X )  be an rXn algebra, 2 < r < n, as defined in [ 13. Spelling this out, E 
is a real n-dimensional vector space which is equipped with a positive-definite inner 
product ( , ) and also with an r-fold vector cross product, that is with a map X : E' + E 
which satisfies the axioms (cf [ 2 , 3 ] ) :  

X is r-linear (1) 

( X ( a 1 , .  ' . , ur) ,  0,) = 0 i = 1 , 2 ,  . . . , r ( 2 )  

( ~ ( U I , .  . . , Ur), X ( U 1 , .  . . , U , ) ) = ( U ,  A . .  . A  U , l U l  A . .  . A  U,) ( 3 )  

where ( u l  A .  . . A U,  I b,  A .  . . A b,) = det((u,, b,)). Associated with an rXn algebra is the 
'scalar ( r  + 1)-tuple product' 0 defined by 

ul,...,ur)=(u~,X(ul,..., a,)). (4) 
By axioms (1) and ( 2 ) ,  0 is alternating, whence so is X .  Consequently we may view 
X as a linear map A' E + E. 

It is known ( [ 2 , 3 ] ,  see also [l]) that 2Xn algebras exist only in dimensions n = 3 , 7 ,  
that 3Xn algebras exist only in dimensions n = 4,8, and that for r > 3, rXn algebras 
exist only in dimension r + 1 .  In the case of the 'non-exceptional' r X (  r + 1) algebras 
it is easy to see that axioms ( 1 ) - ( 3 )  possess precisely two solutions for each r b 2 ,  
given in terms of the star operator A ' E  + E by 

X ( U 1 , .  . . , U , ) = * * ( U ,  A . .  . A  U,) .  ( 5 )  

Now, for Euclidean space E, the star operator is well known to be an isometry. 
Consequently in these non-exceptional cases the following strengthened form of ( 3 )  
holds: 

( 6 )  
Going in the other direction it should be noted that if we had adopted ( l ) ,  ( 2 )  and 

( 6 )  as axioms, instead of ( 1 ) - ( 3 ) ,  then we would have overlooked the exceptional 2 x 7  

( ~ ( U I ,  . . . ,  U ~ ) , x ( b ~ ,  . . .  b ~ ) ) = ( U l A  ...AU~IblA...Abr). 
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and 3 x 8  cases, which are in fact of greatest interest! For, viewing X as A'E + E, we 
see that (6) implies that X is an  isometry, and  hence that dim(A'E) = d i m  E = n, which 
(for r 3 2) occurs only in the non-exceptional cases r = n - 1. The purpose of this 
paper is to obtain the generalisations of ( 6 )  which are valid in the exceptional 2 x 7  
and 3 x 8  cases, namely those given in the following two theorems. In the case of a 
2 x 7  algebra we will denote the underlying seven-dimensional Euclidean space by E' 
rather than E, and will denote the scalar triple product by 4, not Q,: 

4(a,  b, c ) = ( a ,  X(b ,  c)) .  (7) 

Since 4 is alternating we think of it also as an  element ~ E A ' E '  and denote by * a 
(suitably signed) star operator A3E'+ A'E'. 

Theorem A. For a 2 x 7  algebra (E ' ,  ( , ), X)  we have the identity 

W ( a ,  b ) ,  X(U, 0)) = ( a  A b I U A U)+ $(a,  b, U, U )  (8) 

where rC, = *4. 

Theorem B. For a 3 x 8  algebra (E, ( , ), X)  we have 

( X (  a, b, c ) ,  X(( U, U, w ) )  = ( a  A b A c 1 U A U A w )  + F (  a, b, c, U, U, w )  (9) 

where (writing f( a, b, c )  +f( 6, c, a )  +f( c, a, b )  as C y ~ , , ~ , f (  a, 6, c ) )  

F ( a ,  b, c, U, U, w )  = E CYC,,,,, cYcU,",da, u)Q,(b, c, U, w )  (10) 

with E = + 1  or -1  according to whether the 3 x 8  algebra is of type I or type I1 (see [l]). 

Remark. Some slight insight into the identity (8) can be gained from the following 
alternative proof of (6) in the case of the familiar vector cross product a x  b in 
three-dimensional Euclidean space. In this 2 x 3  case let us define $ by 

$ ( a ,  b, U, U )  = ( a  x b, U x U ) - ( a  A bl U A U ) .  ( 1 1 )  

By axiom ( 3 )  we have 

$ ( a ,  b, a, b )  = 0. 

(From the point of view of the teaching of a x b to undergraduates via the geometric 
definition a x b = I/ a / /  11 b /I sin f3 n, then (12) holds because sin' 0 = 1 -cos* e.) Observ- 
ing that $ ( a ,  b, a, U )  = $(a ,  U ,  a, b ) ,  linearisation of (12) in the vector b yields 

(13 )  
Consequently $(a ,  b, U,  U ) ,  which (trivially) is zero when a = b and when U = U, is also 
zero when a = U. The quadrilinear form $ is thus alternating and  hence, in dimension 
3, is the zero form. This proof of (6) (and hence of the familiar identity ( a  x b )  x U = 
(a ,  u ) b  - ( b ,  u ) a )  fails for dimension n > 3 ,  where $ is still alternating but may not be 
zero. So we are led to speculate, could $, for n > 3 ,  be simply related to ,$? Conceivably 
we could be led in this way to consideration of the exceptional 2 x 7  algebras, since 
only in dimension 7 ( = 4 + 3 )  can 4 and 4, considered as elements of A' E '  and A' E' ,  
be related by the star operator. 

In terms of the tensor components OObrd = @ ( e O ,  eh, e , ,  e d )  of Q, relative to an  
orthonormal basis, the identity (10) takes on the form 

$ ( a ,  b, a, U )  = 0. 

Q,abcc@ur,ws  = 66:: + 9 ~ 6 ~ ~ @ ' " ~ , , , , ~ .  (14) 
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In this coordinate form the identity (10) has in fact previously appeared in the physics 
literature on d = 11 supergravity theories (see [4, 51). The tensor is totally 
skew-symmetric, self-dual (as noted also in [ l ] )  and invariant under the Spin(7) 
subgroup of SO( E )  = SO(8) which is the automorphism group of the 3 x 8  algebra. 
(Conceivably, as discussed in [6], the invariance group of @ could even be bigger than 
Spin ( 7 ) . )  

In  [4] the eight-dimensional identity (14) was obtained by making use of a seven- 
dimensional identity (the coordinate form of (8)). In  the present paper we instead 
straightaway pursue a coordinate-free proof of identity (9). The identity (8) can then 
be obtained from (9) as follows. 

Choose any unit vector e E E and let E '  denote the seven-dimensional subspace 
which is orthogonal to e. Then E '  becomes a 2 x 7  algebra upon defining 

X ( a ,  b) = X(a,  e, b) for a, b e  E' .  (15) 

The associated scalar triple product d(a, b, c )  = (a,  X(b, c)) is thus related to @ by 

d(a, b, c )  = @ ( e ,  a, b, c )  a, 6, c E E' .  

Consequently, after using the self-duality of @, the special case c = w = e and a, b, U ,  v E 

E' of identity (9) is seen to yield identity (8). 
Our proof of theorem B will start out from certain explicit expressions for X and 

@ which we now describe. Let us find E as the realisation E = (C'))" of complex 
four-dimensional Hilbert space C4. We denote the inner product on C4 by (a, b) and 
take it to be linear in a and so antilinear in b. Let A denote a determinant function 
for C4, normalised to be equal to +1 upon some ordered orthonormal basis 
{ e o ,  e , ,  e 2 ,  e3} for C4. Let b x c x d denote the 'complex ternary vector cross product' 
on C4 which is defined by 

(16) 
This cross product satisfies a peculiar kind of complex version of properties ( l ) ,  (2) 
and (6): 

(17) 

(18) 

(19) 

(20) 
Thus E is equipped now not only with O(8) geometry by means of ( , ), but also with 
Sp(8; [w) geometry by means of [ , 1. 

We now claim that a ternary vector cross product X for ( E ,  ( , )) is given by 

A( a, b, c, d )  = (a ,  b x c x d ) .  

a ,  x a, x a3 is triantilinear in a , ,  a 2 ,  a3 

( a ,  x a,x a 3 ,  a,)  = O  

( a ,  x a,x a 3 ,  b, x b,x b3) =det(b, ,  a,). 

(a ,  b) = (a,  b)+i[a, b]. 

i = 1, 2, 3 

Finally, let (a,  b) and [ a ,  b] denote the real and imaginary parts of (a, b):  

X ( a ,  6, c ) =  a x b x c + i  C y ~ , , ~ , ~ [ a ,  b]c 

@(a, b, c, d )  = W N a ,  b, c, d))+Cyc,.,,[a, bl[c, d l .  

(21) 

(22) 
I t  is possible to check directly that X so defined does satisfy the axioms (1)-(3). 
However, another method of carrying out this check is slightly cleaner. Define a map 
{ } : E 3 +  E by (cf [ l ] )  

(23) 

the associated scalar quadruple product being therefore 

{abc}=X(a ,  b, c ) + ( u ,  b)c+(b, c ) u - ( u ,  c)b 
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i.e. in our  present case, by 

{abc} = a x b x c + (a,  b)c+ (b, C ) U  - ( U ,  c)b. (24) 

Then one can check that { } as given by (24) enjoys the properties 

{ } is trilinear (1') 

{ aac} = (a, a)c = { caa} (2') 

({abc}, {abc}) = (a,  a)(b, b)(c, c). (3') 

As demonstrated in [6, theorem 2.31, checking that { } satisfies (1')-(3') is completely 
equivalent to proving that X satisfies (1) - (3) .  As noted also in [6], X is in fact of 
type I. 

The way ahead is now clear: definition (21) combined with property (19) will surely 
allow us to 'evaluate' the inner product ( X ( a ,  b, c), X ( u ,  U, w ) ) .  However, in order to 
simplify the result to the desired form as given in theorem B, the following preliminary 
lemma is helpful. 

Proof of lemma. Start from the fact ('Cramer's rule') that alternation of the quin- 
quelinear function A (  a, ,  a 2 ,  a 3 ,  a4)as of four-dimensional complex vectors a , ,  . . . , a5 
must yield zero. Upon forming the inner product of this result with a sixth vector, 
and  changing the notation, we have 

(25) C y ~ , , ~ , , ( a ,  u)A(b, c, U, w)  = (U, u)A(a, b, c, w ) - ( w ,  u ) A ( a ,  b, c, U). 

Equally well we also have 

CYC,,,, , .(~, a)A(b, C, U, W )  = (b ,  a)A(u, U, W, C )  - (c, a)A(u, U, W, b). (26) 

By adding Cyc,,,,, ( 2 5 )  to cyca,b,, (26) and  taking the real part we obtain the result 
announced in the lemma. 
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The real part of the 3 x 3 complex determinant D contributes (a A b A c I U A U A w )  plus 
other terms. These latter, taken along with the fourth term on  the RHS of (27) ,  contribute 
an  amount 

[b,  U l + [ U ,  al[b, U ] + [ %  b l [ 4  V I  

to the coefficient of ( c ,  w),  i.e. by (22)  an  amount 

@(a, b, U, U )  - Re(A(a, b, U, U ) )  

By virtue of the lemma the terms involving Re(A) and  Im(A) cancel, and  theorem B 
ensues, with E = +l.  Replacing X E type I with - X  E type I1 gives theorem B in the 
case E = -1. 
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